
Post-hoc Out-of-Distribution Detection

CS 726: Course Project

Harshit Varma1, Aaron Ninan2, Eeshaan Jain2, Ipsit Mantri2

Indian Institute of Technology Bombay

1Department of Computer Science and Engineering
2Department of Electrical Engineering



OOD Detection

▶ Detecting ‘Out-Of-Distribution’ samples

▶ Usually aims to learn/define a scoring function that assigns high scores to ID data and low
scores to OOD data

▶ We focus only on classification problems, after a classifier has already been trained in a
standard way (a post-hoc setting)

▶ A commonly used baseline proposed by [HG16]

softmax score(x) = max
y∈Y

p(y |x) =
maxy∈Y

(
exp (⟨ y ,F (x ; θF )⟩)

)∑
y ′∈Y exp (⟨ y ′,F (x ; θF )⟩)

▶ Similarly can define:

max logit score(x) = max
y∈Y

(
⟨ y ,F (x ; θF )⟩

)
avg logit score(x) = − 1

K

∑
y∈Y

⟨ y ,F (x ; θF )⟩



Energy-based OOD Detection

▶ Softmax Classifiers

p(y |x) = exp (⟨ y ,F (x ; θF )⟩)∑
y ′∈Y exp (⟨ y ′,F (x ; θF )⟩)

▶ Energy-based Models

p(y |x) = exp (−E (x , y ; θE )/T )∑
y ′∈Y exp (−E (x , y ′; θE )/T )

=
exp (−E (x , y ; θE )/T )

exp (−E (x ; θE )/T )

E (x ; θE ) = −T log

∑
y∈Y

exp (−E (x , y ; θE )/T )





Energy-based OOD Detection

▶ Can view a classifier as an energy-based model

E (x , y ; θE ) = E (x , y ; θF ) = −T ⟨ y ,F (x ; θF )⟩

E (x ; θE ) = E (x ; θF ) = −T log

∑
y∈Y

exp (⟨ y ,F (x ; θF )⟩)


▶ Use E (x ; θF ) to score [LWOL20]

energy score(x) = −E (x ; θF ) = log

∑
y∈Y

exp (⟨ y ,F (x ; θF )⟩)





Relation between energy score and softmax score

▶ energy score and softmax score are related as follows

log softmax score(x) = logmax
y∈Y

p(y |x)

= logmax
y∈Y

exp (⟨ y ,F (x ; θF )⟩)− log

∑
y ′∈Y

exp (⟨ y ′,F (x ; θF )⟩)


log softmax score(x) = max logit score(x)− energy score(x)

▶ softmax score unreliable, as composed of two different scores acting in opposite directions



Asymptotic behaviour of energy score

Let lk = ⟨ yk ,F (x ; θF )⟩ (the k th logit)
Let M = max logit score(x) = maxy∈Y

(
⟨ y ,F (x ; θF )⟩

)
, let this be achieved at the mth logit.

energy score(x) = log

∑
y∈Y

exp (⟨ y ,F (x ; θF )⟩)


= log

(
K∑

k=1

exp (lk)

)

= log

(
exp (M) ·

K∑
k=1

exp (lk −M)

)

= M + log

1 +
∑
k ̸=m

exp (lk −M)


Second term → 0 for a ‘good’ classifier on ID data =⇒ energy score(x) ≈ max logit score(x)
Also observed in practice.



Dirichlet-based OOD Detection

▶ Assume a Dirichlet distribution over the softmax-ed logits of the DNN

▶ Estimate concentration parameters α via maximum likelihood

D = {s(i) = softmax(F (x (i); θ̂F ))}Ni=1

NLL(α) =
N∑
i=1

(∑
k

log Γ(αk)− log Γ

(∑
k

αk

)
−
∑
k

(
(αk − 1) log s

(i)
k

))

= N
∑
k

log Γ(αk)− N log Γ

(∑
k

αk

)
−
∑
k

(
(αk − 1)

∑
i

log s
(i)
k

)

▶ Get α̂ = argminα>0 NLL(α) via gradient descent. Adam converges after a few epochs.

▶ Define dirichlet score as follows

dirichlet score(x) = −
∑
k

(
(α̂k − 1)

∑
i

log s
(i)
k

)



Asymptotic behaviour of dirichlet score

▶ For a good classifier F (x ; θ̂F ), expected to have αk ≈ α0 ∀ k ∈ {1, . . . ,K} with α0 ≪ 1

▶ Corresponds to a Dirichlet distribution having the density concentrated at the corners of
the simplex SK−1

▶ Check behaviour of log p(s|α) when αk = α0 ∀ k α0 → 0+ (see report for full derivation)

lim
α0→0+

log p(s|α) = lim
α0→0+

(
log Γ(Kα0)−

∑
k

log Γ(α0)

)
−
∑
k

log sk

∝ K (energy score(x) + avg logit score(x))

▶ dirichlet score acts as an ensemble of two different score functions

▶ Can be reason behind the consistent improvements observed over the energy score



Finetuning with dirichlet score

▶ The NLL loss defined earlier leads to a natural auxiliary loss function which can be used to
fine-tune the model when auxiliary OOD data is available

▶ α’s fixed to the values obtained after fitting to the ID data

▶ We aim to calibrate the softmax probabilities of the ID data towards the learnt probability
distribution and the OOD data anywhere away from it

▶ Xin,Xout are batches of ID and OOD data respectively. t
(j)
k is the softmax probability of

the k th class for the j th sample in the OOD batch. s
(i)
k defined in a similar way for Xin.

Lft(Xin,Xout) =
∑
k

(
(αk − 1)

∑
i

log t
(i)
k

)
−
∑
k

(
(αk − 1)

∑
i

log s
(i)
k

)

=
∑
k

(αk − 1)

∑
j

log t
(j)
k −

∑
i

log s
(i)
k


▶ The below loss can then be used for fine-tuning

L(Xin,Yin,Xout) = Lce(Xin,Yin) + λLft(Xin,Xout)



Finetuning with energy score

▶ Similar to the previous section, energy score can be used for finetuning the neural network
so that in-distribution-based energies are assigned a lower value and out-of-distribution
data is assigned higher values

▶ This allows for more distinguishable in-/out-of-distribution data as we have more flexibility
in shaping the energy surface

▶ The paper suggested a Dual Margin Loss (DML) which can be appended to the
cross-entropy loss in a similar fashion as Dirichlet, with the expression

Lenergy =E(xin,y)∼Dtrain
in

(
max(0,E (xin)−min)

)2
+E(xout,y)∼Dtrain

out

(
max(0,mout − E (xout))

)2
▶ To set min, first we find E(E (xin)) and set it to a value lower than that. For mout , we find

E(E (xout)) where the data is auxiliary, and set mout to be larger than the obtained value

▶ Tuning the two margin hyperparameters requires careful tuning, and we claim that having
two margins are unnecessary for the task



Analysis of Lenergy (1)

▶ The goal of finetuning and the corresponding loss is to lower the energies of the
in-distribution data and increase of the out-of-distribution data

▶ We need to heavily penalize those out-of-distribution energies which lie near in-distribution
energy ranges. With this intuition, we describe three loss functions which we tested upon,
with the motivation in brackets

▶ MCL (Minimum Classification Error)

Lenergy = E (xin,y)∼Dtrain
in

(xout,y)∼Dtrain
out

[
1

1 + e−(E(xin)−E(xout))

]



Analysis of Lenergy (1)

▶ LOL(Log/Hinge)

Lenergy = E (xin,y)∼Dtrain
in

(xout,y)∼Dtrain
out

[
log
(
1 + eE(xin)−E(xout)

)]
▶ HEL (Harmonic Energy)

Lenergy = E (xin,y)∼Dtrain
in

(xout,y)∼Dtrain
out

[
− 2E (xout)

1 + E (xin) · E (xout)

]

▶ All are parameterless loss functions! Empirically these loss functions beat DML



Evaluation

▶ Datasets: MNIST, FMNIST, CIFAR-10, MNIST-35689 (i.e., only the classes 3, 5, 6, 8 and
9 of MNIST)

▶ Model: VGG-16

▶ Metrics
▶ FPR95: FPR of OOD samples when the TPR for ID samples is 95%. Classification threshold

set at the 95th percentile of the ID scores.
▶ AUROC: The area under the receiver operating characteristic
▶ AUPR: Area under the Precision-Recall curve

▶ Finetuning settings
▶ No auxiliary dataset available: random patching used to create synthetic auxiliary data from

the ID data
▶ Auxiliary dataset available: a completely different dataset is used for finetuning



Results without any finetuning

ID Dataset OOD Dataset FPR95 (S) FPR95 (E) FPR95 (D) AUROC (S) AUROC (E) AUROC (D) AUPR (S) AUPR (E) AUPR (D)
MNIST CIFAR10 0.0093 0.0105 0.0080 0.9927 0.9948 0.9953 0.9945 0.9956 0.9962
MNIST FMNIST 0.0332 0.0341 0.0250 0.9884 0.9910 0.9921 0.9911 0.9925 0.9921
FMNIST CIFAR10 0.6675 0.3916 0.3645 0.8790 0.9243 0.9331 0.9015 0.9309 0.9400
FMNIST MNIST 0.7589 0.5543 0.5361 0.8105 0.8578 0.8706 0.8391 0.8700 0.8829
CIFAR10 MNIST 0.6261 0.4661 0.3996 0.8657 0.9128 0.9263 0.8897 0.9278 0.9380
CIFAR10 FMNIST 0.6038 0.4379 0.3552 0.8815 0.9232 0.9393 0.9056 0.9373 0.9496
MNIST 35869 MNIST 01247 0.4117 0.4437 0.4260 0.9282 0.9224 0.9288 0.9358 0.9310 0.9360
MNIST 35869 CIFAR10 0.0824 0.0937 0.0555 0.9776 0.9809 0.9849 0.9752 0.9762 0.9811

Table: S: softmax score, E: energy score, D: dirichlet score

▶ All scores perform very well on MNIST

▶ Rest are the interesting cases, especially MNIST 35689 vs MNIST 01247 as the
softmax score performs better than both the scores in this case



Results after finetuning with Dirichlet Loss (No aux. setting)

ID Dataset OOD Dataset F1-score (ID, D, D) F1-score (ID, E, DM) FPR95 (E, DM) FPR95 (D, D) AUROC (E, DM) AUROC (D, D) AUPR (E, DM) AUPR (D, D)
FMNIST CIFAR10 0.9195 0.9251 0.1909 0.2539 0.9716 0.9513 0.9751 0.9558
FMNIST MNIST 0.9195 0.9251 0.2081 0.4337 0.9672 0.9060 0.9708 0.9129
MNIST 35869 MNIST 01247 0.9885 0.9940 0.2337 0.3704 0.9555 0.9102 0.9574 0.9127
CIFAR10 MNIST 0.8763 0.8699 0.3914 0.2473 0.9317 0.9566 0.9426 0.9645
CIFAR10 FMNIST 0.8763 0.8699 0.3932 0.2166 0.9326 0.9640 0.9428 0.9701

Table: (E, DM): energy score after finetuning with the Dual Margin Loss, (D, D): dirichlet score after
finetuning with the dirichlet loss

▶ Finetuning with both the losses improve the metrics, compared to the corresponding cases
of no finetuning

▶ DML has 2 hyperparameters while Dirichlet loss has none



Results after finetuning with Dirichlet Loss (No aux. setting): Plots

Figure: Left: Before finetuning with Dirichlet loss, Right: After finetuning with Dirichlet loss



Results after finetuning with Energy losses (Aux. setting)

Loss F1-score (ID) FPR95 (E) FPR95 (D) AUROC (E) AUROC (D) AUPR (E) AUPR (D)
DML 0.9834 0.5381 0.5207 0.8131 0.7951 0.7820 0.7642
MCL 0.9944 0.2443 0.2626 0.9458 0.9364 0.9438 0.9323
LOL 0.9954 0.2067 0.2172 0.9641 0.9591 0.9668 0.9617
HEL 0.9927 0.3265 0.3176 0.9387 0.9353 0.9448 0.9388

Table: ID dataset: MNIST 35689, OOD dataset: MNIST 01247, Finetune dataset: CIFAR10

Loss F1-score (ID) FPR95 (E) FPR95 (D) AUROC (E) AUROC (D) AUPR (E) AUPR (D)
DML 0.9908 0.0597 0.0960 0.9872 0.9814 0.9882 0.9824
MCL 0.9924 0.0102 0.0120 0.9938 0.9937 0.9950 0.9948
LOL 0.9897 0.0256 0.0243 0.9919 0.9923 0.9933 0.9936
HEL 0.9919 0.0147 0.0139 0.9948 0.9947 0.9956 0.9955

Table: ID dataset: MNIST, OOD dataset: FMNIST, Finetune dataset: CIFAR10



Results after finetuning with Energy losses (Aux. setting): Plots

Figure: Left: Distribution plot for DML, Right: Distribution plot for LOL

▶ Better separation of energy values, less mixing



Conclusion + Contribution

▶ Presented asymptotic analysis of various scores, their inter-relatedness, and a novel score
based on the Dirichlet distribution that outperforms the energy score consistently across
different metrics and datasets

▶ Finetuning (in both settings) improves performance by increasing the ID-OOD energy gap

▶ Having more parameters/margins doesn’t improve performance (moreover gives worse in
many cases). We can avoid extra tuning of hyperparameters by relying on any of the
above margin-less losses

▶ Contribution:
▶ Everyone: Literature survey, running models, debugging, writing report & presentation
▶ Harshit: Dirichlet-based OOD formulation and analysis, finetuning in no aux. data settings
▶ Eeshaan: Margin-less loss formulation and analysis, finetuning in aux. data settings
▶ Aaron: Attempts at Wasserstein-distance-based score and analysis
▶ Ipsit: Attempts at adversarial robustness and analysis



References

Dan Hendrycks and Kevin Gimpel, A baseline for detecting misclassified and
out-of-distribution examples in neural networks, arXiv preprint arXiv:1610.02136 (2016).

Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li, Energy-based out-of-distribution
detection, Advances in Neural Information Processing Systems 33 (2020), 21464–21475.


