
Course Project, Advanced Machine Learning, Spring 2022, IIT Bombay

POST-HOC OUT-OF-DISTRIBUTION DETECTION

Harshit Varma∗
Computer Science and Engineering
Indian Institute of Technology Bombay
Mumbai, India
harshitvarma@cse.iitb.ac.in

Eeshaan Jain∗, Aaron Jerry Ninan, Ipsit Mantri
Electrical Engineering
Indian Institute of Technology Bombay
Mumbai, India
{19D070022,190100001,180070032}@iitb.ac.in

NOTATION

Acronyms
ID In-Distribution

OOD Out-Of-Distribution

DNN Deep Neural Network

1 PROBLEM STATEMENT1

We focus on OOD detection, in a classification setting, after a classifier has already been trained (i.e.,
a post-hoc/post-training setting). Many popular baselines propose score functions to detect OOD
data. These score functions should assign low scores to OOD data and high scores to ID data. We
aim to provide better scoring functions that are effective, computationally cheap, generalize across
different OOD settings and have a theoretical backing. In cases when the performance is not good
enough, we provide ways to further improve the separability between the ID and OOD data without
using a large and diverse auxiliary OOD dataset (like 80 Million Tiny Images and ImageNet-22K)
for fine-tuning, unlike many other popular approaches (Hendrycks et al., 2018; Liu et al., 2020). We
further demonstrate that tuned margins don’t always improve the result over different non-parametric
energy-based loss functions.

All our code is available at: https://github.com/ph-ood/post-hoc-ood

2 RELATED WORK / LITERATURE

LeCun et al. (2006) is a tutorial on general energy-based approaches.
Yang et al. (2021) is a survey paper on OOD detection.
Hendrycks & Gimpel (2016) propose a simple and commonly used baseline for OOD detection
based on the maximum (over classes) softmax probability.
Hendrycks et al. (2018) propose the use of an auxiliary OOD dataset to enforce the softmax proba-
bilities for the OOD data to be close to a uniform distribution over the classes.
Lee et al. (2018) fit class-conditional multivariate Gaussian distributions (with shared covariance
matrix) on the penultimate layer output of a DNN softmax classifier via maximum likelihood, and
then use the Mahalanobis distance as a score.
Wang et al. (2021) propose a a Wasserstein distance based score.
Our base paper is Liu et al. (2020), which interprets softmax classifiers as energy-based models
and proposes a simple new score based on this which outperforms many popular baselines and can
also be theoretically shown to be better than Hendrycks & Gimpel (2016). It also provides a way
to further improve the performance using by fine-tuning on an auxiliary dataset using the proposed
score.

3 DATASETS AND CODE

Datasets:
∗

Equal Contribution
1Note: all technical details are provided in the Appendix
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• MNIST

• Fashion MNIST

• CIFAR-10

• MNIST-35689: MNIST with classes 3, 5, 6, 8, and 9 (a subset of the entire MNIST).
Similarly MNIST-01247.

Reference Code:

• https://github.com/wetliu/energy_ood

• https://github.com/tayden/ood-metrics

Libraries: Our code is written in PyTorch and uses standard libraries like NumPy, Matplotlib, etc.
Most experiments were run locally. Google Colab was used for fine-tuning experiments and training
models which required more compute.

4 PROPOSED APPROACH

We provide a simple and novel (to the best of our knowledge) scoring function based on the Dirichlet
distribution. We assume a Dirichlet distribution over the softmax probability outputs generated by
the the classifier and estimate the distribution’s concentration parameters via maximum likelihood;
using the softmax probabilities outputted by the classifier after training as the dataset for maximum
likelihood estimation. This is computationally cheap as only a forward pass through the classifier is
required and the estimation converges quickly (≈ 5 epochs) in practice. We also provide theoretical
reasoning and show the superiority of our method in comparison to the method by Liu et al. (2020)
by analyzing the asymptotic behaviour of our approach. Please have a look at the appendix for all
the details. Empirically as well, our method consistently outperforms Liu et al. (2020)’s method2

across multiple datasets and metrics. Our method also naturally leads to a loss function for enforcing
further separation of the ID and the OOD data by the model.

From the results (e.g. MNIST-35689 vs MNIST-01247 compared to MNIST-35689 vs CIFAR-10),
we also observe that the all scores perform poorly when the ID and the OOD data share low-level
features (like edges, low-order image statistics, etc). We aim to enforce further separation between
the ID and the OOD data particularly in this setting. We propose a way that doesn’t require the
usage of another large and diverse auxiliary dataset unlike Hendrycks et al. (2018); Liu et al. (2020).
We can achieve this by creating auxiliary OOD data by augmenting the ID data itself. Particularly,
we can use elastic distortions and ’random patching’ (patching the image and shuffling the patches
randomly) as data augmentation strategies. Both of these methods preserve low-level image features
but remove the higher level structural information. The intuition behind doing this is to help improve
the performance by pushing the model to give more importance to high level features like shape and
structure. Due to computational constraints, we were only able to try out the random patching
method.

5 RESULTS

Experiments using various scores across the datasets using multiple metrics are done. All results
are available on this link. Sheet ‘No finetuning’ contains the results when the scores are used on
the pretrained models without any finetuning. ‘With finetuning’ contains results obtained using the
scores after finetuning using different schemes. ‘Loss Functions’ contains a comparison of different
kinds of energy-based fine-tuning losses (details in the appendix). Other sheets contains results of
different ablation studies and isn’t particularly relevant. Notation used: m: negative of the minimum
logit, M : maximum logit, E: energy-score as proposed by Liu et al. (2020), S: softmax-score as
proposed by Hendrycks & Gimpel (2016), D: dirichlet-score (our method). Other notations are
clarified in the sheets themselves. Density plots of various scores on different datasets are available
on this link, filenames explain what the plot contains. Please use IITB LDAP for viewing all results.

2We skip the comparison of our methods with other methods like Lee et al. (2018) for brevity since Liu
et al.’s method outperforms them.
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https://github.com/myleott/mnist_png/blob/master/mnist_png.tar.gz
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https://github.com/tayden/ood-metrics
https://docs.google.com/spreadsheets/d/1lpOFOnXRPtpixJLZURkDXXCVGnYMFyfswsYjiBVnbH4/edit?usp=sharing
https://drive.google.com/drive/folders/1qVqBTxxB0gq8QrYfSNJar4eYgza6cUDZ?usp=sharing
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APPENDIX

More details about the proposed approach and background material are provided here.

1 INTRODUCTION

Below sections closely follow Liu et al. (2020) and LeCun et al. (2006).

1.1 DISCRIMINATIVE MODELS

Let X denote the input space. Let K be the number of classes. Let Y = {oh(k)}Kk=1 be the output
space, where oh(k) is the one-hot encoding of k. We only consider deep neural networks (DNNs)
as discriminative models. Let F (x; θF ) : X → RK denote a DNN with parameters θF that maps an
input to un-normalized logits. To get p(y|x) we (usually) pass these through a softmax function:

p(y|x) = exp (⟨ y, F (x; θF )⟩)∑
y′∈Y exp (⟨ y′, F (x; θF )⟩)

1.2 ENERGY-BASED MODELS (EBMS)

Energy-based approaches aim to build a function E(x, y; θE) : X × Y → R, parametrized by
θE , that maps an input to a single scalar called the “energy”, which can be seen as measure of
compatibility between x and y. In a discriminative setting, we can define p(y|x) via the Gibbs
distribution.

p(y|x) = exp (−E(x, y; θE)/T )∑
y′∈Y exp (−E(x, y′; θE)/T )

=
exp (−E(x, y; θE)/T )

exp (−E(x; θE)/T )

E(x; θE) = −T log

∑
y∈Y

exp (−E(x, y; θE)/T )


Where E(x; θE) is the Helmholtz Free Energy.

1.3 DISCRIMINATIVE MODELS AS EBMS

Discriminative models can thus be thought of as an EBM implicitly parametrized by θF

E(x, y; θE) = E(x, y; θF ) = −T ⟨ y, F (x; θF )⟩

E(x; θE) = E(x; θF ) = −T log

∑
y∈Y

exp (⟨ y, F (x; θF )⟩)


1.4 OOD DETECTION

OOD Detection can be thought of as a binary classification problem which aims to use a scoring
function to assign high scores to ID data and low scores to OOD data.

A simple candidate for the scoring function is the maximum of the predicted softmax probabilities
as explored by Hendrycks & Gimpel (2016).

softmax score(x) = max
y∈Y

p(y|x)

= max
y∈Y

(
exp (⟨ y, F (x; θF )⟩)∑

y′∈Y exp (⟨ y′, F (x; θF )⟩)

)

=
maxy∈Y

(
exp (⟨ y, F (x; θF )⟩)

)∑
y′∈Y exp (⟨ y′, F (x; θF )⟩)
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Based on this, we define the following two scores (the motivation for defining these will be clear
soon)

max logit score(x) = max
y∈Y

(
⟨ y, F (x; θF )⟩

)
avg logit score(x) = − 1

K

∑
y∈Y

⟨ y, F (x; θF )⟩

Note that the average of the logits for a “good” classifier is expected to be < 0 for ID data as roughly
all but one logits are expected to be < 0. This behaviour is observed in practice as well. Thus the
score is defined to be negative of the average.

Liu et al. (2020) use −E(x; θF ) with T = 1 as the scoring function. We shall also assume T = 1
throughout. If NLL is used as the loss function, it can be shown that the energy E(x; θF ) will be
minimized for the ID data.

energy score(x) = −E(x; θF )

= log

∑
y∈Y

exp (⟨ y, F (x; θF )⟩)


The two scores are related as follows

log softmax score(x) = logmax
y∈Y

p(y|x)

= logmax
y∈Y

exp (⟨ y, F (x; θF )⟩)− log

∑
y′∈Y

exp (⟨ y′, F (x; θF )⟩)


log softmax score(x) = max logit score(x)− energy score(x)

Thus, the softmax score is composed of a difference two scores (i.e., both effectively act in opposite
directions). Due to this, the softmax score cannot be reliably used for OOD detection.

2 ASYMPTOTIC ANALYSIS OF THE ENERGY SCORE

Let lk = ⟨ yk, F (x; θF )⟩ (the kth logit)
Let M = max logit score(x) = maxy∈Y

(
⟨ y, F (x; θF )⟩

)
and let this be achieved at the mth logit.

energy score(x) = log

∑
y∈Y

exp (⟨ y, F (x; θF )⟩)


= log

(
K∑

k=1

exp (lk)

)

= log

(
exp (M) ·

K∑
k=1

exp (lk −M)

)

= M + log

1 +
∑
k ̸=m

exp (lk −M)


For ID data, and for a good classifier, the second term in the log is expected to be ≪ 1.
Thus, energy score(x) ≈ max logit score(x). This is also observed in practice as shown in the
results section, with the energy score performing only marginally better than the max logit score.
This is also seen in the softmax score values, which are concentrated heavily near 1 for the ID data,
implying log softmax score(x) = max logit score(x)− energy score(x) ≈ 0.
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3 DIRICHLET-BASED OOD DETECTION

The Dirichlet PDF paramterized by the concentration parameters α ∈ RK
+ is given by

p(s|α) =
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

sαk−1
k for s ∈ SK−1

It’s a natural choice for a distribution over values ∈ SK−1, the open standard K − 1 simplex.

We assume a Dirichlet distribution over the softmax-ed logits of the DNN and estimate α via maxi-
mum likelihood and then use log p(s|α̂) as the OOD detection score.

D = {s(i) = softmax(F (x(i); θ̂F ))}Ni=1

NLL(α) =
N∑
i=1

(∑
k

log Γ(αk)− log Γ

(∑
k

αk

)
−
∑
k

(
(αk − 1) log s

(i)
k

))

= N
∑
k

log Γ(αk)−N log Γ

(∑
k

αk

)
−
∑
k

(
(αk − 1)

∑
i

log s
(i)
k

)

We get α̂ = argminα>0 NLL(α) via gradient descent. Using the Adam optimizer, we converge
after a few epochs.

After estimating α, the Dirichlet score is defined as follows and can be used for OOD detection

dirichlet score(x) = −
∑
k

(
(αk − 1)

∑
i

log s
(i)
k

)

4 ASYMPTOTIC ANALYSIS OF THE DIRICHLET SCORE

For a good classifier F (x; θ̂F ) we are expected to have αk ≈ α0 ∀ k ∈ {1, . . . ,K} with α0 ≪ 1.
This corresponds to a Dirichlet distribution having the density concentrated at the corners of the
simplex SK−1.
Thus, we analyse the behaviour of log p(s|α) when αk = α0 ∀ k α0 → 0+

lim
α0→0+

log p(s|α) = lim
α0→0+

(
log Γ(Kα0)−

∑
k

log Γ(α0)

)
−
∑
k

log sk

= lim
α0→0+

(log Γ(Kα0)−K log Γ(α0))−
∑
k

⟨ yk, F (x; θ̂F )⟩+
∑
k

log

∑
y′∈Y

exp ⟨ y′, F (x; θF )⟩


= lim

α0→0+
(log Γ(Kα0)−K log Γ(α0))−K

(
1

K

∑
k

⟨ yk, F (x; θ̂F )⟩+ E(x; θ̂F )

)
= lim

α0→0+
(log Γ(Kα0)−K log Γ(α0)) +K (energy score(x) + avg logit score(x))

∝ K (energy score(x) + avg logit score(x))

Thus, the asymptotic behaviour of the proposed Dirichlet score acts as an ensemble of two differ-
ent score functions. This behaviour can be reason behind the consistent improvements over the
individual scores as observed in the results.

5 FINE-TUNING WITH THE DIRICHLET SCORE

The NLL loss defined leads to a natural auxiliary loss function which can be used to fine-tune the
model when auxiliary OOD data is available. For this we can keep α’s fixed to the values obtained
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after fitting to the ID data. The below loss aims to calibrate the softmax probabilities of the ID data
towards the learnt probability distribution and the OOD data anywhere away from it. Xin, Xout are
batches of ID and OOD data respectively. t(j)k is the softmax probability of the kth class for the jth

sample in the OOD batch. s(i)k defined in a similar way for the ID batch.

Lft(Xin, Xout) =
∑
k

(
(αk − 1)

∑
i

log t
(i)
k

)
−
∑
k

(
(αk − 1)

∑
i

log s
(i)
k

)

=
∑
k

(αk − 1)

∑
j

log t
(j)
k −

∑
i

log s
(i)
k


The below loss can then be used for fine-tuning

L(Xin, Yin, Xout) = Lce(Xin, Yin) + λLft(Xin, Xout)

6 FINE-TUNING WITH THE ENERGY SCORE

The objective described in Liu et al. (2020) is

min
θ

E(x,y)∼Dtrain
in

[− log⟨ y, F (x; θF )⟩] + λLenergy

where

Lenergy = E(x,y)∼Dtrain
in

(
max(0, E(x; θF )−min)

)2
+ E(x,y)∼Dtrain

out

(
max(0,mout − E(x; θF ))

)2
Dtrain

in is the in-distribution training data and Dtrain
out is the unlabeled auxiliary out-of-distribution train-

ing data. The main issue with this formulation is that there are two margin hyperparameters min and
mout that need to be tuned carefully. Our plan moving forward is to also improve on this and devise
a single margin loss function, which does not harm the performance, as the authors of Liu et al.
(2020) claimed that dual-margin loss functions performed better empirically.

Some margin-less alternatives are described below, with the corresponding motivations:

• Minimum Classification Error Loss (MCL): The loss function is defined as

Lenergy = E (xin,y)∼Dtrain
in

(xout,y)∼Dtrain
out

[
1

1 + e−(E(xin)−E(xout))

]

• Log Loss (LOL): The loss function can be considered a soft-hinge loss and is defined as

Lenergy = E (xin,y)∼Dtrain
in

(xout,y)∼Dtrain
out

[
log
(
1 + eE(xin)−E(xout)

)]
• Harmonic Energy Loss (HEL): The loss function is defined as

Lenergy = E (xin,y)∼Dtrain
in

(xout,y)∼Dtrain
out

[
− 2E(xout)

1 + E(xin) · E(xout)

]

7 EXPERIMENTAL SETUP

We use the VGG16 (with batch normalization) as our model for all the experiments. Inputs are
normalized channel-wise on a per-image basis.
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