
Completed under the evaluation policies of CS769: Optimization for Machine Learning

EFFICIENT MONOTONE SUBMODULAR MAXIMIZATION
SUBJECT TO MATROID CONSTRAINTS IN SUBMODLIB

Eeshaan Jain & Ipsit Mantri
Department of Electrical Engineering
Indian Institute of Technology Bombay
{19D070022, 180070032}@iitb.ac.in

Sibasis Nayak
Department of Computer Science
Indian Institute of Technology Bombay
{190050115}@iitb.ac.in

ABSTRACT

Maximization of monotone submodular functions subject to cardinality con-
straints has been a topic of interest with various greedy algorithms, with many of
these algorithms achieving a

(
1− 1

e

)
approximation on the optimal solution (OPT)

at high computational speeds. However, these variants of classical greedy do not
work well on matroid constraints, and only provide a 1

2 approximation of OPT. To
overcome this, CONTINUOUS-GREEDYwas introduced in Calinescu et al. (2011)
which gives a

(
1− 1

e − ϵ
)

approximation of OPT but it has a O(n8) running time.
In spite of that, the algorithm is useful and generalizable. An improvement to
the algorithm is ACCELERATED-CONTINUOUS-GREEDY introduced in Badani-
diyuru & Vondrák (2014) has Õ(n2) running time and is much more efficient than
the previous version. We plan to create a support for matroid-based optimiza-
tion and implement these two optimization algorithms along with four matroid-
constraint-based submodular functions in SUBMODLIB Kaushal et al. (2022), an
efficient and scalable Python library for submodular optimization in Python with
a C++ optimization engine. Since our project is contribution-based, the code is
available on the following fork in the matroid branch: Submodlib-fork

1 INTRODUCTION

In the recent years, a lot of attention has been given to optimization of functions which give di-
minishing returns, termed as submodular functions. The reason mainly being - they arise naturally
when dealing with certain kinds of problems. For example, the task of placing sensors in an area to
maximize the amount of information gained from them has been shown to be submodular Guestrin
et al. (2005). Similarly, influence maximization over social network graphs also has close relations
to submodularity Kempe et al. (2003). Given a submodular function f and a constraint F , we are
interested in the optimization problem given as

max
S

f(S) over S ∈ F (1)

The type of constraint usually depends on the problem we are tackling. In case of sensor place-
ment or influence maximization, we have a cardinality constraint, i.e |S| ≤ k. In case of welfare
maximization, we have a matroid constraint, i.e S ∈ M whereM is a matroid. It has been shown
by Nemhauser et al. (1978) that for submodular functions which are monotone, a simple greedy
algorithm works well under cardinality constraint and provides at least

(
1 − 1

e

)
approximation of

the optimal solution. However, it has been shown by Nemhauser et al. (1978) that for the matroid
constraints, i.e givenM = (E, I), the problem

max
S∈I

f(S) (2)

1

https://github.com/EeshaanJain/submodlib/tree/matroid

Completed under the evaluation policies of CS769: Optimization for Machine Learning

the greedy solution provides a 1
2 approximation of the optimal solution. Hence for a complicated

constraint, greedy algorithm doesn’t work well anymore. The CONTINUOUS-GREEDY algorithm
proposed by Calinescu et al. (2011) provides a

(
1− 1

e

)
solution to the above problem by converting

the discrete optimization problem to a continuous one using multilinear relaxation and converting
the solution obtained there back into a discrete one. The main benefit of multilinear relaxation is the
usage of convexity and concavity, and the above problem is transformed to

max{F (y) : y ∈ P (M)} (3)

where P (M) is the matroid polytope of M. Hence, it provides a two-step method to get the
required approximation of OPT. One drawback of CONTINUOUS-GREEDY is that the running
time of the algorithm is Õ(n8) with Õ(n7) oracle calls. An improvement to the above algo-
rithm, called ACCELERATED-CONTINUOUS-GREEDY was proposed by Badanidiyuru & Vondrák
(2014) which has a Õ(n2) oracle calls and achieves a

(
1 − 1

e − ϵ
)

approximation. This variant is
faster than the previous proposed speedup solutions which have Õ(n4) oracle calls. This speedup
can be related to how STOCHASTIC-GREEDY speeds up CLASSICAL-GREEDY Mirzasoleiman
et al. (2014).

There are a variety of problems which are based around matroid-constraint-based optimization. One
of them was stated in 2, and three related functions - Submodular Welfare Problem (SWP), Separable
and Generalized Assignment Problem (SAP/GAP), have been described in Section 2.

SUBMODILIB Kaushal et al. (2022) is a submodular optimization library with a C++ optimization
engine and has implemented many submodular functions, such as Facility Location, Graph Cut etc.
along with constraint-based optimizers. However, currently there is no support for any matroid-
based optimizers or matroid-constraint-based functions in the library. In this project, we introduce
formally the problem at hand, and implement the functions and optimizers in the SUBMODLIB
compatible format which can be merged with the main library.

2 PRELIMINARIES

2.1 SUBMODULAR FUNCTIONS

A set function f : 2V → R is said to be submodular, if for all A,B ⊆ V ,

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B)

This can equivalently be stated as, for C ⊆ D ⊆ V and any i ∈ V \D,

f(C ∪ {i})− f(C) ≥ f(D ∪ {i})− f(D) ≡ ∆(i|C) ≥ ∆(i|D)

A set function f is said to be monotone if f(A) ≥ f(B) whenever A ⊇ B. The set function f is
said to be non-negative if the co-domain of f is R+. When considering the optimization problem at
hand, we will consider non-negative monotone submodular functions.
The notion of submodular functions is extended with smoothness by Wolsey (1982). A function
F : [0, 1]V → R+ is smooth submodular if

F (x) + F (y) ≥ F (x ∨ y) + F (x ∧ y)

where (x ∨ y) = max{x, y} and (x ∧ y) = min{x, y}, both in an coordinate-wise fashion. F is
monotone if for x ≤ y coordinate-wise, F (x) ≤ F (y).
The above can be stated together as follows, F : [0, 1]V → R is smooth monotone submodular if

1. (Smoothness) F ∈ C2([0, 1]V), i.e the second-order partial derivatives exists everywhere

2. (Monotonicity) For each j ∈ V , ∂F
∂yj
≥ 0 everywhere

3. (Submodularity) For any i, j ∈ V , ∂2F
∂yi∂yj

≤ 0 everywhere

2.2 MATROIDS

A matroid M = (E, I) is a structure with a finite ground set E, the universe and a collection of
subsets of 2E (power set of E), I called independent sets, such that

2

Completed under the evaluation policies of CS769: Optimization for Machine Learning

1. ∅ ∈ I
2. ∀ I ∈ I and J ⊆ I , J ∈ I
3. (Exchange axiom) ∀ I, J ∈ I and |I| < |J |, there exists x ∈ J \ I such that I ∪ {x} ∈ I

A base B of a matroidM is a maximal independent set, and the exchange axiom guarantees that all
bases ofM have the same cardinality. Some examples of matroids are -

1. k-Uniform Matroid: A matroidM = (E, I) is k-Uniform if

I = {X ⊆ E : |X| ≤ k}

2. Partition Matroid: A matroidM = (E, I) is a partition matroid if E is partitioned into
disjoint sets E1, · · · , Ee and

I = {X ⊆ E : |Ei ∩X| ≤ ki for i = 1, · · · , e}

The rank function of a matroid M = (E, I) is a set function rM : 2E → N such that for any
S ⊆ E,

rM(S) = max{|X| : X ⊆ S,X ∈ I}
As an analogy, it can be thought to be similar to the rank function of matrices, or dimension in vector
spaces. For example, for the k-Uniform matroid defined above, rM(S) = min{|S|, k} and the rank
of the partition matroid is

∑
i ki.

The matroid-rank theorem states that r : 2E → N is a rank function for a matroid if and only if

1. r(∅) = 0 and r(A ∪ {e})− r(A) ∈ {0, 1} ∀ A ⊆ E, e ∈ E

2. r is submodular, i.e for any S, T ⊆ E we have r(S) + r(T) ≥ r(S ∪ T) + r(S ∩ T)

Having defined the matroid rank function, we can finally state what a matroid polytope is. Given a
a matroidM = (E, I), the matroid polytope P (M) is defined as

P (M) = conv({xS ∈ R|E| : S ∈ I})

We can also write that

P (M) = {x ∈ R|E| : x(S) ≤ r(S) ∀ S ⊆ E

xe ≥ 0 ∀ e ∈ E}

where x(S) =
∑

e∈S xe. Now, the base of a matroid can be defined as the set S ∈ I such that
rM(S) = rM(E) and the base polytope is defined as

B(M) =
{
y ∈ P (M) :

∑
i∈E

yi = rM(E)
}

2.3 MULTILINEAR EXTENSION

For a monotone submodular set function f : 2V → R+, a canonical extension to a smooth monotone
submodular function can be obtained as follows. For y ∈ [0, 1]V , let ŷ denote a random vector in
{0, 1}V where each coordinate is independently rounded to 1 with probability yj . ŷ ∈ {0, 1}V can
be identified with R ⊆ V with the indicator given as ŷ = 1R. Then the multilinear function F

(multilinear =⇒ ∂2F
∂y2

j
= 0) can be defined as

F (y) = E[f(ŷ)] =
∑
R⊆X

f(R)
∏
i∈R

yi
∏
j∈R

(1− yj)

2.4 SUBMODLIB

As described in Section 1, SUBMODLIB is a python library for submodular optimization with a
C++ optimization engine. The current optimizers in the library include CLASSICAL-GREEDY,
LAZY-GREEDY and STOCHASTIC-GREEDY all of which provide a

(
1 − 1

e

)
approximation of

OPT in the case of cardinality constraints, with a running time of atmost O(kn). A list of common

3

Completed under the evaluation policies of CS769: Optimization for Machine Learning

submodular, mutual information, conditonal gain and clustering functions have also been imple-
mented which are based around cardinality constraints. The usage of the library can be seen on
their GitHub page, but in short the functions and optimizers are exposed separately and for cardinal-
ity constraints are interchangeable. This is slightly in constrast with how matroid-constraint-based
optimizers are formulated, and we describe that now.

2.5 MATROID CONSTRAINTS

The constraint F can be either simple, such as the cardinality constraint, or more complex such
as a matroid or knapsack constraint. In particular, 2 is of importance and has been studied previ-
ously. In fact, there is a randomized algorithm which gives a

(
1− 1

e

)
approximation to the problem

max{f(S) : S ∈ I} where f : 2E → R is a monotone submodular function given by a value oracle
andM = (E, I) is a matroid given by the membership oracle Calinescu et al. (2011). Apart from
2, there are some other matroid-constraint-based submodular problems of great interest as follows.

2.5.1 SUBMODULAR WELFARE PROBLEM

Firstly, the general framework for the welfare problem is called the Social Welfare Maximization
Problem and is shown to come up often in combinatorial auctions Lehmann et al. (2002). Given
a set X of m items, and n players each of which as a utility function wi : 2X → R+, the goal
is to partition X into disjoint subsets S1, · · · , Sn inorder to maximize the social welfare given as∑n

i=1 wi(Si). When the utility function wi are submodular, the problem is of great interest, as it
has been shown that CLASSICAL-GREEDY obtains a 1

2 approximation of OPT Nemhauser et al.
(1978) and further has been shown that a

(
1 − 1

e + ϵ
)

approximation implies P = NP Khot et al.
(2005). However, the problem can be reduced to a matroid-constraint-based problem with

(
1 − 1

e

)
approximation of OPT. The reduction following Calinescu et al. (2011) is as follows -

(Step 1) Given the set of items A and n players, the ground set is defined as X = [n]×A, i.e one
clone of each item for each player. For each player, define the mapping πi : 2

X → 2A

which takes all clones in S to corresponding player as

πi(S) = {j ∈ A : (i, j) ∈ S}
(Step 2) Given the utility functions w1, · · · , wn : 2A → R+, define f : 2X → R+ as

f(S) =

n∑
i=1

wi(πi(S))

which is submodular if wi are submodular.
(Step 3) We need to partition A = S1∪· · ·∪Sn such that

∑
i wi(Si) is maximized. This problem is

equivalent to finding S =
⋃n

i=1({i}×Si) ⊆ X containing at most one clone of each item,
so that f(S) is maximized. Hence, we have the independence set as (for Xj = [n]×{j})

I = {S ⊆ X : ∀ j; |S ∪Xj | ≤ 1}

Thus, we have reduced the SWP to the form of 2.

2.5.2 GENERALIZED AND SEPARABLE ASSIGNMENT PROBLEMS

The Separable Assignment Problem consists of m items and n bins. Each bin has a collection of
feasible sets Fj satisfying down-closure (if A ∈ Fj and B ⊆ A, then B ∈ Fj). Each item has
a value vji depending on the bin it is placed in. In SAP, we need to choose disjoint feasible sets
Sj ∈ Fj to maximize

∑
j

∑
i v

j
i . The reduction to matroid constraint following Calinescu et al.

(2011) is as follows -

(Step 1) Define the ground set X = {(j, S) : 1 ≤ j ≤ n, S ∈ Fj}, i.e for each bin, create a
separate copy of the items which are packed only in j

(Step 2) Define the function f : 2X → R+ which is monotone submodular as

f(S) =
∑
i

max
j
{vji : ∃ (j, S) ∈ S, i ∈ S}

4

https://github.com/decile-team/submodlib/tree/master/tutorials

Completed under the evaluation policies of CS769: Optimization for Machine Learning

(Step 3) The matroid constraint isM = (X, I) where S ∈ I if and only if S contains at most one
pair (j, Sj) for each j.

The Generalized Assignment Problem is a special case of SAP, where the feasible set is a knapsack
constraint given as Fj = {S :

∑
i s

j
i ≤ 1}. The rest of the analysis stands same as SAP.

3 METHODS AND ANALYSIS

3.1 CONTINUOUS-GREEDY

As seen in Section 2, multilinear relaxation brings the discrete problem to a continuous space, and
the optimization is performed there. There are two questions to answer now - how to approximate
the function in the continuous space and how to bring it back to the discrete domain. To do this, we
have two steps

• The continuous greedy process approximates max{F (y) : y ∈ P (M)} within a
(
1 − 1

e

)
factor

• The pipage-rounding algorithm converts a fractional solution to a discrete solution satisfy-
ing f(S) ≥ F (y) ≥

(
1− 1

e

)
OPT

The continuous greedy process functions with an overtime flow given as

dy

dt
= vmax(y) where vmax = argmax

v∈P
(v · ∇F (y)) (4)

It has been proved in Calinescu et al. (2011) that y(1) ∈ P and F (y(1)) ≥
(
1 − 1

e

)
OPT . In the

earlier version of algorithms following the continuous greedy process, vmax = ej and that produces
a 1

2 approximation.
The pipage rounding technique was introduced in Ageev & Sviridenko (2004) and the goal is go
from a solution y∗ ∈ P (M) to the discrete solution S ∈ I.

Algorithm 1: Continuous Greedy

Input : f : 2E → R+,M = (E, I)
Output: Fractional solution y

1 d← 1
9·(rM(E))2 ;

2 n← |E|;
3 y ← 0;
4 for t← 0; t ≤ 1; t← t+ δ do
5 R(t)←contains each j independently w.p yj(t);
6 ωj(t)←estimate(E[fR(t)(j)]) using 10

δ2 (1 + lnn) samples;
7 I(t)← maximal independent set inM with weights ωj(t);
8 y(t+ δ)← y(t) + 1I(t);
9 end

10 return y(1)

3.2 ACCELERATED-CONTINUOUS-GREEDY

Although CONTINUOUS-GREEDY works and provides the required approximation, the running
time is Õ(n8) due the repeated sampling and small time steps in the algorithm. Hence, we need
a faster algorithm for any practical usage. The ACCELERATED-CONTINUOUS-GREEDY pre-
sented in Badanidiyuru & Vondrák (2014) interpolates the fast CLASSICAL-GREEDY with the
slow CONTINUOUS-GREEDY with a δ parameter such that δ = 1 corresponds to the former and
δ ∈ (0, 1) corresponds to discretized version of the latter. The main reason why the acceleration is
provided is because of updating partial derivatives after each increment, which gives a cleaner anal-
ysis and mimics the discrete greedy algorithm. Along with that, due to the discrete greedy nature,

5

Completed under the evaluation policies of CS769: Optimization for Machine Learning

we take larger steps and thus need fewer samples per iteration, and fewer iterations. Moreover, any
δ > 0 gives a

(
1− 1

e −O(δ)
)

approximation.

The implementation of ACCELERATED-CONTINUOUS-GREEDY currently utilizes the Swap-
Rounding function, which we found to be inefficient. Along with that, the Pipage-Rounding function
in CONTINUOUS-GREEDY can also have improvements. Hence, we enhance the working of the al-
gorithm, and switch the Swap-Rounding procedure with our optimized Pipage-Rounding procedure.
We found that the first two steps of the HitConstraint subroutine called by Pipage-Rounding in Ca-
linescu et al. (2011) were inefficient, and moreover the subroutine was called twice. We found that
there was no need to do so and thus we wrote a separate Pipage-Rounding algorithm as shown below:

Algorithm 2: Efficient Pipage-Rounding
1 function Pipage-Rounding (f,x, I);

Input : f : 2E → R+, x ∈ [0, 1]E , I ⊆ 2E

Output: A set S ⊆ E satisfying S ∈ I
2 T ← [];
3 for i← 0; i < length(x); i← i+ 1 do
4 if 0 < x[i] < 1 then
5 T .push(i);
6 end
7 end
8 try:
9 while length(T) > 0 do

10 i, j ← T [0], T [1];
11 if x[i] + x[j] < 1 then
12 p← x[j]

x[i]+x[j] ;
13 if rand() < p then
14 x[j]← x[i] + x[j];
15 x[i]← 0;
16 delete(T, 0);
17 end
18 else
19 x[i]← x[i] + x[j];
20 x[j]← 0;
21 delete(T, 1);
22 end
23 end
24 else
25 p← 1−x[i]

2−x[i]−x[j] ;
26 if rand() < p then
27 x[i]← x[i] + x[j]− 1;
28 x[j]← 1;
29 delete(T, 1);
30 end
31 else
32 x[j]← x[i] + x[j]− 1;
33 x[i]← 1;
34 delete(T, 0);
35 end
36 end
37 end
38 catch:
39 S ← E[x];
40 return S
41 end
42 S ← E[x];
43 return S

6

Completed under the evaluation policies of CS769: Optimization for Machine Learning

Algorithm 3: Decreasing Threshold
1 function Decreasing-Threshold (f,x, ϵ, I);

Input : f : 2E → R+, x ∈ [0, 1]E , ϵ ∈ [0, 1], I ⊆ 2E

Output: A set S ⊆ E satisfying S ∈ I
2 B ← ∅;
3 d← maxj∈E f(j);
4 for w = d;w ≥ ϵ

rd;w ← w(1− ϵ) do
5 for e ∈ E do
6 we(B,x)←estimate(E[fR(x+ϵ·1B)(e)]) using r logn

ϵ2 samples;
7 if B ∪ {e} ∈ I and we(B,x) ≥ w then
8 B ← B ∪ {e}
9 end

10 end
11 end
12 return B

Algorithm 4: Accelerated Continuous Greedy

Input : f : 2E → R+, I ⊆ 2E

Output: A set S ⊆ E satisfying S ∈ I
1 x← 0;
2 for t← ϵ; t ≤ 1; t← t+ ϵ do
3 B ←Decreasing-Threshold(f,x, ϵ, I);
4 x← x+ ϵ · 1B ;
5 end
6 S ←Pipage-Rounding(x, I);
7 return S

4 IMPLEMENTATION AND CHANGES

4.1 GENERAL

In general, since we are working with matroids, we defined hash functions for nesting sets for
collections pairwise and group-wise. Along with that functions for calculating matroid rank and
random sample were created.

4.2 CONTINUOUS GREEDY AND RELATED FUNCTIONS

For implementing Continuous Greedy, there was no inbuilt structure we could use firstly, as
SetFunction has been developed for cardinality constraints. As we are dealing with more com-
plex constraints, we implemented the matroidSetFunction which has different data types for
each operations (since the constraint is no more integer-based but set-based). The functions imple-
mented are

1. maximize(): Performs the maximization

2. matroidGain(): Calculates the weights

3. getMaxIndependenceSet(): Generates the maximal independent sets for reduction

4. evaluateFinalSet(): Evaluates the final set

These are in consistence with the Continuous-Greedy algorithm defined above. For the sub-
modular functions, we chose SWP, SAP and GAP. As GAP is just a special instance of SAP, only the
first two submodular functions were defined. For SWP, we assume for each player and each subset
to be given as an oracle. For SAP we give the value function and the Feasible sets as an oracle.

7

Completed under the evaluation policies of CS769: Optimization for Machine Learning

4.3 ACCELERATED CONTINUOUS GREEDY

The accelerated continuous greedy algorithm uses the monotone submodular function as a value
oracle and the matroid constraint as a membership oracle. The implementation of various sub-
modular functions as value oracle is already present in submodlib. Hence, if the user pro-
vides the independence set as an input, then any submodular function can be maximized over
a matroid constraint. This can be easily built into the current system by overloading the
maximize() operation in SetFunction. We implemented the following functions in the
AcceleratedContinuousGreedyOptimizer:

1. decreasing threshold(): Implements the Decreasing-Threshold algorithm.
2. maximize fractional(): Maximizes the submodular function using

the multilinear extension and gives an optimal fractional solution. Uses the
decreasing threshold()

3. pipage rounding(): Implements the Efficient Pipage-Rounding
4. maximize(): A wrapper function which calls the above functions in order to get the

optimal set.

5 FUTURE WORK

We have currently implemented the optimizers and functions in our fork of SUBMODLIB. The next
step is allowing memoization to happen and merging with the main branch, after discussions with
the SUBMODLIB team.

REFERENCES

Alexander A. Ageev and Maxim Sviridenko. Pipage rounding: A new method of constructing
algorithms with proven performance guarantee. Journal of Combinatorial Optimization, 8:307–
328, 2004.

Ashwinkumar Badanidiyuru and Jan Vondrák. Fast algorithms for maximizing submodular func-
tions. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’14, pp. 1497–1514, USA, 2014. Society for Industrial and Applied Mathematics. ISBN
9781611973389.

Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a monotone submod-
ular function subject to a matroid constraint. SIAM Journal on Computing, 40(6):1740–1766,
2011. doi: 10.1137/080733991. URL https://doi.org/10.1137/080733991.

Carlos Guestrin, Andreas Krause, and Ajit Paul Singh. Near-optimal sensor placements in gaus-
sian processes. In Proceedings of the 22nd International Conference on Machine Learning,
ICML ’05, pp. 265–272, New York, NY, USA, 2005. Association for Computing Machinery.
ISBN 1595931805. doi: 10.1145/1102351.1102385. URL https://doi.org/10.1145/
1102351.1102385.

Vishal Kaushal, Ganesh Ramakrishnan, and Rishabh Iyer. Submodlib: A submodular optimization
library, 2022. URL https://arxiv.org/abs/2202.10680.

David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through a social
network. In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’03, pp. 137–146, New York, NY, USA, 2003. Association
for Computing Machinery. ISBN 1581137370. doi: 10.1145/956750.956769. URL https:
//doi.org/10.1145/956750.956769.

Subhash Khot, Richard J. Lipton, Evangelos Markakis, and Aranyak Mehta. Inapproximability re-
sults for combinatorial auctions with submodular utility functions. In Proceedings of the First
International Conference on Internet and Network Economics, WINE’05, pp. 92–101, Berlin,
Heidelberg, 2005. Springer-Verlag. ISBN 3540309004. doi: 10.1007/11600930 10. URL
https://doi.org/10.1007/11600930_10.

8

https://doi.org/10.1137/080733991
https://doi.org/10.1145/1102351.1102385
https://doi.org/10.1145/1102351.1102385
https://arxiv.org/abs/2202.10680
https://doi.org/10.1145/956750.956769
https://doi.org/10.1145/956750.956769
https://doi.org/10.1007/11600930_10

Completed under the evaluation policies of CS769: Optimization for Machine Learning

Benny Lehmann, Daniel Lehmann, and Noam Nisan. Combinatorial auctions with decreasing
marginal utilities. CoRR, cs.GT/0202015, 2002. URL https://arxiv.org/abs/cs/
0202015.

Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrák, and Andreas
Krause. Lazier than lazy greedy. CoRR, abs/1409.7938, 2014. URL http://arxiv.org/
abs/1409.7938.

George Nemhauser, Laurence Wolsey, and M. Fisher. An analysis of approximations for maximizing
submodular set functions—i. Mathematical Programming, 14:265–294, 12 1978. doi: 10.1007/
BF01588971.

Laurence A. Wolsey. Maximising real-valued submodular functions: Primal and dual heuristics for
location problems. Mathematics of Operations Research, 7(3):410–425, 1982. ISSN 0364765X,
15265471. URL http://www.jstor.org/stable/3689607.

9

https://arxiv.org/abs/cs/0202015
https://arxiv.org/abs/cs/0202015
http://arxiv.org/abs/1409.7938
http://arxiv.org/abs/1409.7938
http://www.jstor.org/stable/3689607

	Introduction
	Preliminaries
	Submodular Functions
	Matroids
	Multilinear Extension
	SUBMODLIB
	Matroid Constraints
	Submodular Welfare Problem
	Generalized and Separable Assignment Problems

	Methods and Analysis
	Continuous-Greedy
	Accelerated-Continuous-Greedy

	Implementation and Changes
	General
	Continuous Greedy and Related Functions
	Accelerated Continuous Greedy

	Future Work

