
Towards Sustainable Learning: Coresets
for Data-efficient Deep Learning
Yu Yang (UCLA), Hao Kang (Ga. Tech), Baharan
Mirzasoleiman (UCLA)

Eeshaan Jain

Given at QuML, Aalto University

Efficient Learning

• Training models on large datasets requires expensive
computational resources, and has wasteful consequences on the
environment

• One way to solve this is to train on a reliable subset of the
dataset, since all instances might not be of equal importance or
may not contribute to generalization

• Recent papers have shown that for strongly convex models, a
weighted subset of data (coreset) – that matches the full gradient
– has convergence guarantees on gradient descent

• However, this isn’t the case for non-convex models

1

Non-convex Models

• Unlike strongly convex models, the training dynamics of
non-convex models cannot be bounded beforehand

• Since non-convex models are learned with stochastic gradients,
they require unbiased estimates of the full gradient

• Finally, iteratively selecting coresets from full data is an
expensive task and significantly limits the training-speedup

The paper has the following contributions:

1. Modeling of non-convex loss for coreset selection
2. Proposal of a selection method for (mini-batch) SGD
3. Improving efficiency of coreset selection

2

Background (1)

• The model parameters are obtained through ERM:

w∗ = argmin
w∈W

E(xi ,yi)∼D [L(w; (xi , yi))]
• Since for over-parameterized models, GD becomes extremely

slow, stochastic methods are used which select one or more
mini-batches of size m (M: i.i.d.), and performs:

wt+1 = wt − η
1
m

∑
i∈M

gt,i

where gt,i is the gradient of example i at time t.
• Existing coreset methods solve

S∗ = argmin
S⊆V ,γj⩾0∀j∈S

|S| s.t. max
wt∈W

∑
i∈V

gt,i −
∑
j∈V

γjgt,j

 ⩽ ϵ

• The normed gradient distance between data points can be
upper-bounded with the feature vector difference turning the
problem into the submodular cover problem: 3

Background (2)

S∗ = argmin |S| s.t. C −
∑
i∈V

min
j∈S ∥xi − xj∥ ⩾ C − ϵ

A set function f : 2V → R+ is said to be submodular if for S, T ⊆ V

where S ⊆ T and v ∈ V \ T , if f(S ∪ v) − f(S) ⩾ f(T ∪ v) − f(T)
This can be solved using the greedy algorithm in O(n · k)

• For neural networks, finding gradients is slow and doesn’t yield
high quality subsets. Usually just the last layer gradients are
used –

S∗t = argmax
S⊆V

C −
∑
i∈V

min
j∈S

gLt,i − gLt,j

 s.t. |S| ⩽ k (SCS)

• It isn’t clear when the coresets are to be updated for training
non-convex models, and finding coresets from full data has
convergence guarantees for (Incremental) GD, and not stochastic

4

Crest: Challenge 1

(C1) For deep networks, the value of L(·) changes very rapidly for
different datapoints, i.e., ∇Li(wt) might be drastically different
than ∇Li(wt + δ) forwt + δ ∈ Neighborhood(wt)

Figure 1: CRAIG Performance Figure 2: CRAIG Gradient Error

5

Crest: Challenge 2 & 3

(C2) There are no convergence guarantees when using stochastic
gradient methods. Moreover, some examples may get high
weight which makes the mini-batch gradient variance larger than
random

Figure 3: Bias of mini-batch gradients Figure 4: Var. of mini-batch gradients

(C3) The O(n · k) complexity during coreset selection prevents
speedup for large datasets when selecting iteratively

6

Overcoming C1

• Overview:
• Model the non-convex loss as a piece-wise quadratic function, thus

the problem is broken down to finding coresets for a series of
quadratic problems

• A coreset Sℓ is found at every selection step ℓ, capturing wtℓ ,
which is followed by a quadratic loss approximation Fℓ based on
the gradient and curvature

• The coreset Sℓ is in the δ-neighborhood, i.e., L(wtℓ + δ) = Fℓ(δ) to
ensure convergence and small gradient error within Nℓ

• To find Sℓ, (SCS) is solved
• Methodology:

• A 2nd-order Taylor series expansion of L(wtℓ) around Nℓ gives

Fℓ(δ) = 1
2δ

⊤Htℓ ,Sℓ
δ + gtℓ ,Sℓ

+ L(wtℓ)δ
Here Htℓ ,Sℓ

and gtℓ ,Sℓ
are the weighted mean of the Hessian and

gradient of instances in Sℓ.

7

Overcoming C1

• Hutchinsons trace estimator method is used to obtain an efficient
and stochastic estimate of the coreset Hessian diagonal with
z ∼ Rademacher:

Htℓ ,Sℓ
z =

∂gtℓ ,Sℓ
z

∂wtℓ

diag(Htℓ ,Sℓ
) = E[z ⊙ (Htℓ ,Sℓ

z)]
• The gradient and diagonal-Hessian are further smoothened using

exponential averaging since they can be noisy
• To enhance efficiency, every T1 iterations, the relative error relative

to in Fℓ(δ), ρtℓ is computed (after getting an unbiased estimate of
L(·) using random samples). If the error < τ, then the coreset isn’t
changed else a new coreset is selected

8

Overcoming C2

• Overview:
• Sample multiple subsets {V1 , . . . ,VP} uniformly at random and

directly select a smaller coreset Sp
ℓ
of size m from each Vp

• Methodology:
• P smaller submodular problems

are solved (one for each Vp) and
Sℓ =

⋃
p∈[P] S

p

ℓ

• Small error of mini-batch
gradients cancel each other out

• For a fixed mini-batch size,
selecting mini-batch coresets
from larger random subsets
results in a smaller variance but
may introduce a larger bias

Figure 5: Gradient error on union

9

Overcoming C3

• Overview:
• When examples are learned, their gradient and loss almost become

zero, and they don’t contribute to training
• Every T2 iterations, the loss of examples are checked, and those

consistently with a value less than α are dropped
• Dropping s examples increases full average gradient by n

n−s ,
which is equivalent to increase learning rate

• If mini-batch coresets closely capture gradient of random subsets
Vp, Crestwith a small enough τ , converges to a ν-stationary point
of the nonconvex loss, but r/m times faster than mini-batch SGD
with mini-batch size m on full data

10

Algorithm

11

Theorem

For any δ, λ > 0, assume
that L is L-gradient Lipschitz
and the stochastic gradients
gt,i have a bounded variance:
Ei∈V [∥gt,i − ∇L(wt)∥] ⩽ σ2.

12

Experiments (1)

Figure 6: Normalized run-time and test accuracy

13

Experiments (2)

Figure 7: Crest running time

14

Experiments (3)

Figure 8: Test error and update comparison

15

Experiments (4)

Forgetting score counts the number of times examples are
misclassified after being correctly classified during the training, and
quantifies the difficulty of learning an example

Figure 9: Forgetting score analysis

16

