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Efficient Learning

• Training models on large datasets requires expensive
computational resources, and has wasteful consequences on the
environment

• One way to solve this is to train on a reliable subset of the
dataset, since all instances might not be of equal importance or
may not contribute to generalization

• Recent papers have shown that for strongly convex models, a
weighted subset of data (coreset) – that matches the full gradient
– has convergence guarantees on gradient descent

• However, this isn’t the case for non-convex models
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Non-convex Models

• Unlike strongly convex models, the training dynamics of
non-convex models cannot be bounded beforehand

• Since non-convex models are learned with stochastic gradients,
they require unbiased estimates of the full gradient

• Finally, iteratively selecting coresets from full data is an
expensive task and significantly limits the training-speedup

The paper has the following contributions:

1. Modeling of non-convex loss for coreset selection
2. Proposal of a selection method for (mini-batch) SGD
3. Improving efficiency of coreset selection
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Background (1)

• The model parameters are obtained through ERM:

w∗ = argmin
w∈W

E(xi ,yi)∼D [L(w; (xi , yi))]
• Since for over-parameterized models, GD becomes extremely

slow, stochastic methods are used which select one or more
mini-batches of size m (M: i.i.d.), and performs:

wt+1 = wt − η
1
m

∑
i∈M

gt,i

where gt,i is the gradient of example i at time t.
• Existing coreset methods solve

S∗ = argmin
S⊆V ,γj⩾0∀j∈S

|S| s.t. max
wt∈W

∑
i∈V

gt,i −
∑
j∈V

γjgt,j

 ⩽ ϵ

• The normed gradient distance between data points can be
upper-bounded with the feature vector difference turning the
problem into the submodular cover problem: 3



Background (2)

S∗ = argmin |S| s.t. C −
∑
i∈V

min
j∈S ∥xi − xj∥ ⩾ C − ϵ

A set function f : 2V → R+ is said to be submodular if for S, T ⊆ V

where S ⊆ T and v ∈ V \ T , if f(S ∪ v) − f(S) ⩾ f(T ∪ v) − f(T )
This can be solved using the greedy algorithm in O(n · k)

• For neural networks, finding gradients is slow and doesn’t yield
high quality subsets. Usually just the last layer gradients are
used –

S∗t = argmax
S⊆V

C −
∑
i∈V

min
j∈S

gLt,i − gLt,j
 s.t. |S| ⩽ k (SCS)

• It isn’t clear when the coresets are to be updated for training
non-convex models, and finding coresets from full data has
convergence guarantees for (Incremental) GD, and not stochastic
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Crest: Challenge 1

(C1) For deep networks, the value of L(·) changes very rapidly for
different datapoints, i.e., ∇Li(wt) might be drastically different
than ∇Li(wt + δ) forwt + δ ∈ Neighborhood(wt)

Figure 1: CRAIG Performance Figure 2: CRAIG Gradient Error
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Crest: Challenge 2 & 3

(C2) There are no convergence guarantees when using stochastic
gradient methods. Moreover, some examples may get high
weight which makes the mini-batch gradient variance larger than
random

Figure 3: Bias of mini-batch gradients Figure 4: Var. of mini-batch gradients

(C3) The O(n · k) complexity during coreset selection prevents
speedup for large datasets when selecting iteratively
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Overcoming C1

• Overview:
• Model the non-convex loss as a piece-wise quadratic function, thus

the problem is broken down to finding coresets for a series of
quadratic problems

• A coreset Sℓ is found at every selection step ℓ, capturing wtℓ ,
which is followed by a quadratic loss approximation Fℓ based on
the gradient and curvature

• The coreset Sℓ is in the δ-neighborhood, i.e., L(wtℓ + δ) = Fℓ(δ) to
ensure convergence and small gradient error within Nℓ

• To find Sℓ, (SCS) is solved
• Methodology:

• A 2nd-order Taylor series expansion of L(wtℓ ) around Nℓ gives

Fℓ(δ) = 1
2δ

⊤Htℓ ,Sℓ
δ + gtℓ ,Sℓ

+ L(wtℓ )δ
Here Htℓ ,Sℓ

and gtℓ ,Sℓ
are the weighted mean of the Hessian and

gradient of instances in Sℓ.
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Overcoming C1

• Hutchinsons trace estimator method is used to obtain an efficient
and stochastic estimate of the coreset Hessian diagonal with
z ∼ Rademacher:

Htℓ ,Sℓ
z =

∂gtℓ ,Sℓ
z

∂wtℓ

diag(Htℓ ,Sℓ
) = E[z ⊙ (Htℓ ,Sℓ

z)]
• The gradient and diagonal-Hessian are further smoothened using

exponential averaging since they can be noisy
• To enhance efficiency, every T1 iterations, the relative error relative

to in Fℓ(δ), ρtℓ is computed (after getting an unbiased estimate of
L(·) using random samples). If the error < τ, then the coreset isn’t
changed else a new coreset is selected
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Overcoming C2

• Overview:
• Sample multiple subsets {V1 , . . . ,VP} uniformly at random and

directly select a smaller coreset Sp
ℓ
of size m from each Vp

• Methodology:
• P smaller submodular problems

are solved (one for each Vp) and
Sℓ =

⋃
p∈[P] S

p

ℓ

• Small error of mini-batch
gradients cancel each other out

• For a fixed mini-batch size,
selecting mini-batch coresets
from larger random subsets
results in a smaller variance but
may introduce a larger bias

Figure 5: Gradient error on union
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Overcoming C3

• Overview:
• When examples are learned, their gradient and loss almost become

zero, and they don’t contribute to training
• Every T2 iterations, the loss of examples are checked, and those

consistently with a value less than α are dropped
• Dropping s examples increases full average gradient by n

n−s ,
which is equivalent to increase learning rate

• If mini-batch coresets closely capture gradient of random subsets
Vp, Crestwith a small enough τ , converges to a ν-stationary point
of the nonconvex loss, but r/m times faster than mini-batch SGD
with mini-batch size m on full data
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Algorithm
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Theorem

For any δ, λ > 0, assume
that L is L-gradient Lipschitz
and the stochastic gradients
gt,i have a bounded variance:
Ei∈V [∥gt,i − ∇L(wt)∥] ⩽ σ2.
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Experiments (1)

Figure 6: Normalized run-time and test accuracy
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Experiments (2)

Figure 7: Crest running time
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Experiments (3)

Figure 8: Test error and update comparison
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Experiments (4)

Forgetting score counts the number of times examples are
misclassified after being correctly classified during the training, and
quantifies the difficulty of learning an example

Figure 9: Forgetting score analysis
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