EESHAAN JAIN

🗞 eeshaanjain.github.io | 🔽 eeshaanjain.iitb@gmail.com | 🖓 EeshaanJain | in eeshaanjain

EDUCATION

Indian Institute of Technology Bombay

B.Tech in Electrical Engineering and M.Tech in Artificial Intelligence (Cumulative GPA: 9.68/10.0)

École Polytechnique Fédérale de Lausanne

Semester Exchange in Computer Science (Grade: 5.5/6)

RESEARCH INTERESTS

Machine Learning: Representation Learning, Geometric Deep Learning, Explainable and Fair AI, Submodularity

PUBLICATIONS

- 1. Eeshaan Jain, Indradyumna Roy, Abir De, Soumen Chakrabarti, "Maximum Common Subgraph Retrieval: Combinatorial and Neural Variants" in progress.
- 2. Eeshaan Jain, Tushar Nandy, Gaurav Aggarwal, Ashish V. Tendulkar, Rishabh K Iyer, Abir De, "Efficient Data Subset Selection to Generalize Training Across Models: Transductive and Inductive Networks", accepted for publication at the 37th Conference on Neural Information Processing Systems, 2023.

RESEARCH EXPERIENCE

Neural Models for Maximum Common Subgraph based Graph Retrieval

Dual Degree Project, Guide: Prof. Abir De, Prof. Soumen Chakrabarti

- ◇ Introduction: Searching for relevant graphs from a corpus has gained recent traction, with advances in designing neural araph retrieval models. However, they show suboptimal performance in MCS based retrieval, and moreover lack interpretability. We aim to design fast and trainable neural functions to approximate the MCS well.
- Designed combinatorial forms of the MCS problem allowing sequential adaptation to neural optimization
- Demonstrated the efficacy of the the approach by outperforming other methods in MSE and Kendall-Tau scores

Generalization Bounds and Explainability of Graph Neural Networks

Research Assistant, Guide: Prof. Vikas Garg, Amauri H. Souza

- Introduction: Theoretical analysis of GNNs has seen some interest recently, however it is restricted due to strict assumptions. We aim to relax them for GNNs and their explanations, and formulate theoretical guarantees of explainability.
- Derived stronger and tighter generalization bounds for different subclasses of message-passing networks
- · Connected notions of robustness, generalizability and faithfulness of explanations with extensions to dynamic graphs

Learning to Select a Subset of Training Examples to Generalize Efficient Model Training May '22 – May '23 Bachelor's Thesis-I (with Google AI), Guide: Prof. Abir De, Prof. Rishabh Iyer (UT Dallas) IIT Bombav

- ◇ Introduction: Adaptive data subset selection methods are tailored for a specific neural architecture, and fail to generalize over other architectures. We propose SUBSELNET, an attention-based subset selection framework which generalizes over the architecture space and selects subsets for unseen architectures quickly.
- Introduced a GNN and attention-based model encoder for crude approximation of outputs over a set of architectures
- Relaxed the combinatorial optimization objective for subset selection on the novel trainable & differentiable selectors
- Demonstrated that our approach constantly **outperformed** other non-adaptive and adaptive subset selection approaches on various datasets and subset sizes in terms of accuracy, subset selection time and memory consumption
- Showed that our approach outperforms other methods in subset-based AutoML tasks such as NAS and HPO

Fairness Audits of Black Box Neural Networks

Bachelor's Thesis-II, Guide: Prof. Abir De

- ◇ Introduction: A fast adoption of AI-based methods across industries poses significant regulatory challenges. "Good" performing models may have biases resulting in performance difference between subpopulations. We work on querying and auditing unknown neural networks to approximate fairness profiles and disallow future fairness manipulations.
- Approximated fairness of blackbox models through near-optimal querying of data points under budget constraints
- Devised an **RL-based algorithm** to sample points through a VAE coupled with a **Gaussian Process** surrogate model
- Introduced a new fairness metric called **Disparity** bridging group and individual fairness notions, and formulated a disparity-minimization-based greedy optimization problem to minimize post-audit manipulation

Mumbai, India Jul '19 – Jun '24 (Expected)

Lausanne, Switzerland Sep '22 - Feb '23

Jul '23 - Ongoing

IIT Bombay

May '23 - Ongoing

Jan '23 - May '23

IIT Bombay

Aalto University

SCHOLASTIC ACHIEVEMENTS

Junior Al Researcher	1ay '22 - Jul '22
PROFESSIONAL EXPERIENCE	
• Secured an All India Rank of 100 and received the KVPY Fellowship by Department of Science and Technology	(2018)
 Ranked in the national top 1% in the National Standard Examination in Physics and Chemistry 	(2018)
Ranked top 300 across India and appeared in the Indian National Chemistry and Astronomy Olympiads	(2019)
 Secured an All India Rank of 120 in JEE Mains (Engineering) among 1.3 million candidates 	(2019)
 Secured an All India Rank of 355 in JEE Advanced among 0.25 million candidates 	(2019)
• Awarded the AP Grade for outstanding performance in Partial Differential Equations and Quantum Chemistry	(2021)
• Department Rank 1 out of 79 students in the Dual Degree Programme, Electrical Engineering (A)	2020 – 2022)
Awarded the Institute Academic Prize for being the top 2 ranks in Electrical Engineering	2021 & 2022)
 Awarded the Google Conference Scholarship and NeurIPS Scholar Award for attending NeurIPS 	(2023)
• Awarded the Undergraduate Research Award for the most outstanding Bachelor's Thesis in Electrical Engineer	ring (2023)

AWL, Inc. Japan: Core Artificial Intelligence Team

- ◇ Introduction: AWL, Inc. (in collaboration with Sony) is the market leader in Deep Learning-based video analytics in Japan
- Surveyed optimization frameworks based around model compression, quantized training and inference speed-up
- Implemented novel hardware-optimized operations and routines on CPUs using Apache TVM to bring down single image and graph inference times on low-power devices by $\mathbf{8} \times$ without hurting the metrics of the outputs
- Utilized GPU-based TensorRT and DLA frameworks with CPU fallbacks to speed up batched inference on Jetson GPUs

TECHNICAL PROJECTS

Post-Hoc Out-of-Distribution Detection	Mar '22 - May '22
Guide: Prof. Sunita Sarawagi (CS 726: Advanced Machine Learning)	IIT Bombay
 Introduced a scoring function based on the assumption of a Dirichlet distribution on the DNN's softmax detection and showed that it could be asymptotically interpreted as an ensemble of two positive scoring 	<pre>c-ed logits for OOD g functions</pre>
 Showed that the score already outperformed other OOD methods on multiple datasets using FPR95, AL 	JROC and AUPR
• Reduced the number of hyperparameters to tune by demonstrating the efficacy of marginless loss funct	tions for the task
Efficient Matroid-constraint-based Submodular Maximization	Mar '22 - May '22
Guide: Prof. Ganesh Ramakrishnan (CS 769: Optimization for Machine Learning)	IIT Bombay
• Implemented the efficient Continuous-Greedy and Accelerated Continuus-Greedy algorithms in SUBM maximize submodular functions under a matroid constraint with $(1 - 1/e - \epsilon)$ guarantees	10DLIB to
 Modified the Pipage-Rounding subroutine for efficient translation of fractional solutions to discrete su 	bsets
 Implemented the Submodular Welfare Problem and, Separable and Generalized Assignment Proble 	m
Sparse Estimation of Epidemic State using Graph Neural Networks	Sep '21 – Nov '21
Guide: Prof. Abir De (CS768: Learning with Graphs)	IIT Bombay
 Generated random and small-world networks using the Erdös–Rényi, Watts-Strogatz, and Barabási–Alb 	ert models
 Implemented the SIR contagion model, treating the epidemic as a CTMC, on our graphs to get a spatio-t Performed node classification (S/I/R) using GCNs by monitoring only a small subset of nodes (15% - 25) 	emporal dataset %)
Stock Market Analysis and Price Prediction	Oct'21 – Nov'21
Course Project (DS203: Programming for Data Science) Special Mention: Best Project	IIT Bombay
• Studied the performance of seven sectors of the Indian stock market during the first wave of COVID-19	from Feb-Jun '20
 Performed EDA on the NIFTY sectoral indices and compared them using various technical indicators such 	ch as RSI
 Compared performance of sequential neural architectures such as LSTMs and 1D CNNs to predict stoc 	k market prices:
Non-Small Cell Lung Cancer Detection and Mutation Prediction	Jan '21 - Apr '21
Guide: Prof. Amit Sethi (Rnd Project)	IIT Bombay
 Trained the Inception v3 network on whole-slide FFPE images obtained from The Cancer Genome Atlas Memorial Center to automatically classify the tissue sample into LUAD, LUSC or non-cancerous 	Program and Tata
Obtained an AUC score of 0.97 on cancer classification comparable to the predictions obtained by patho	logists
 Further trained the network to predict 6 most common mutated genes in LUAD obtaining a maximum A 	UC score of 0.84

Hyperloop Pod Subscale Design

Team Hyperloop IITB

Jan'20 – Dec'20 IIT Bombay

Sapporo, Japan

- Applied knowledge acquired on I2C and CAN communication protocols to the Hyperloop communication systems
- Qualified in the top 5 university teams internationally for the finals of the European Hyperloop Week (EHW 2021)

Autonomous Garbage Collecting Bot

Institute Summer Technical Project | Best Project Award

- Designed an autonomous garbage collecting bot which can classify, detect, collect and segragate various types of trash
- Used YOLO for object detection, ROS for simulation, and designed a custom palming action gripper for easy collection

TECHNICAL SKILLS

Programming Languages: Python, Scala, C++, Julia, HTML, CSS, Javascript **Machine Learning**: PyTorch, PyTorch-Geometric, NLTK, Scikit-Learn, OpenCV, TVM, TensorRT

Software: Scilab, MATLAB, Quartus, Keil, Blender, Git, AutoCAD, SolidWorks, GNU Radio, Spice

Python Libraries : NumPy, Pandas, Matplotlib, Seaborn, SciPy, Qiskit, SymPy, PyQt5, JAX, NetworkX, OpenCV

TEACHING EXPERIENCE

Teaching Assistantships | IIT Bombay

Facilitating smooth course organization, grading papers, mentoring students, conducting tutorials and help sessions

- CS 768: Learning with Graphs, Prof. Abir De, Department of Computer Science
- CS 769: Optimization for Machine Learning, Prof. Ganesh Ramakrishnan, Department of Computer Science Spring 2022
- MA 207: Partial Differential Equations, Prof. Amiya K Pani, Department of Mathematics
- MA 108: Ordinary Differential Equations, Prof. Prachi Mahajan, Department of Mathematics
- CH 107: Quantum Chemistry, Prof. Arindam Chowdhury, Department of Chemistry

Python is Cool, Kids | Student-run Summer Course

• Conducted a summer course for **Practical Python Programming**, consisting of interactive live lectures and guided projects, with **1000+ enrollments**

KEY COURSEWORK

Machine Learning: Programming for Data Science, Introduction to Machine Learning, Learning with Graphs, Foundations of Intelligent Learning Agents, Advanced Machine Learning, Optimization for Machine Learning, Natural Language Processing[†]

Electrical Engineering and Computer Science: Probability and Random Processes, Signal Processing, Microprocessors, Electromagentic Waves, Communication Systems, Digital Signal Processing, Image Processing, Markov Chains, Operating Systems, Information Theory and Coding[†], Automatic Speech Processing[†], Functional Programming[†] ([†]taken at EPFL)

Mathematics and Physics: Calculus, Linear Algebra, Partial Differential Equations, Complex Analysis, Quantum Physics

POSITIONS OF RESPONSIBILITY

Institute Student Mentor

Institute Student Mentorship Program, IIT Bombay

- Responsible for guiding **12 freshmen** focusing on their academic, holistic and overall development in the institute
- Selected based on overall performance in a rigorous process comprising of interviews, SOP and peer reviews

Department Academic Mentor

Department Academic Mentorship Program, IIT Bombay

- Responsible for mentoring 6 junior undergraduates to facilitate their smooth onboarding into the curriculum
- In-charge of the Department Academic Mentorship Program website and internship portal

EXTRA CURRICULAR ACTIVITIES AND OTHER ACHIEVEMENTS

Achievements	 Represented IIT Bombay at Chemenigma hosted by IISc Bangalore, and stood first overall Qualified the LIMIT exam hosted by ISI Bangalore, and selected for their camp on abstract mathematics Completed all six levels of Speed Arithmetic under IPA, and stood 2nd in their national-level competition Represented the school in multiple debate competitions and won the best speaker award twice
Volunteering	 Acted as the Lead Convener of the Chemistry Club at IIT Bombay promoting the use of Al in chemistry Took Python sessions for 30+ undergraduates and graduates at IIT Bombay over the summer
Mentorship	 Mentored a team of 4 freshmen on their project on Automated Indic Sign Language translation Guided 20+ students on their summer reading project on Machine Learning and Graph Learning
Others	 Co-founded AISRG – the first student reading group on Artificial Intelligence at IIT Bombay Elected Class Representative for the Electrical Engineering department for three consecutive years Represented IIT Bombay at Inter-IIT Tech Meet for the high-preparation Machine Learning problem Successfully completed an year-long training in Chess under National Sports Organization Acted in 3 movies, 6 television series and 40+ television advertisements as a child actor

Fall 2023

Fall 2021

Fall 2020

Spring 2020

May '23 - Ongoing

May '23 - Ongoing